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Falcon: Motivation, Overview and 
Performance

This Talk:

● Falcon: Motivation, Overview and Performance
● RDMA/Falcon SW Components
● Relationship to netdev



Datacenter Network (RDMA)

Accelerator Slices (with tightly coupled 
interconnects), Compute Servers, Storage

Scheduler (per island)

Host (many per island)
Resource Manager (global)

Rethinking Transport in NICs - Why?

Satisfy demands of new workloads (massive scale AI/ML 
training, High Performance Computing, Real-time 
Analytics) and existing ones (Storage, RPCs).

New and demanding workloads - high burst 
bandwidth, high Op rate, low latency.

Need order of magnitude improvements over highly 
optimized Software Transports.

Incremental gains of software stack 
optimizations.

Deployment Experiences at scale give us a glimpse of the 
possibilities.

Modernising Ethernet for low latency and 
high bandwidth. 



Falcon technology: A reliable, low latency hardware transport for the ecosystem 
to advance modern hyperscaler infrastructure
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Bringing 10 years of advances in low latency, isolation and efficiency to hardware
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IP

UDP

Falcon

Tail Latency in Ethernet networks
➔ HW assisted delay-based Congestion 

Control
➔ Selective ACKs for fast loss recovery
➔ Multipath capable connections
➔ Bundled under Programmable Engine

Isolation and Visibility at scale 
➔ µs-granularity per-flow Traffic Shaping
➔ Fine-grained Stats for Debuggability, 

Software Defined Network control

Efficiency and Security
➔ Implemented in HW for Low Latency, 

High Op Rate using Industry-standard 
Interfaces, and PSP encryption

RDMA NVMe Custom 
ULP

Falcon: Multi-protocol 
Reliable Transport

https://cloud.google.com/blog/products/identity-security/announcing-psp-security-protocol-is-now-open-source


Falcon Layers 

Resource Management, 
Ordering, Scheduling

Congestion Control, Reliability, 
Load Balancing, Pacing/Shaping

Upper Layer 
Protocol Mapping 

Upper Layer 
Protocol Mapping

ULP Operations, Flow Control

Transaction 
Layer

Packet Delivery 
Layer

Transaction 
Layer

Packet Delivery 
Layer

Multipathing



Mapping Upper Layer Protocols (ULP)  to Falcon

Industry Standard Interface

● RDMA InfiniBand Verbs Compatible ULP

● Supports Reliable Connected (RC) and 
Unreliable Datagram (UD) Queue Pair types.

● Strictly Ordered:  in-order data placement, 
in-order completions.  

● On-NIC reorder buffer to support OOO 
delivery from the network.

Enhanced Interface

● Introduces Relaxed Ordering Modes: weakly 
and unordered.

● Graceful Error Handling with 
Complete-in-Error and continue (CIE): 
signals errors to applications without tearing 
down the connection.

Industry standard interfaces are extended in support of warehouse-scale applications.



Falcon Transaction Layer 

Transaction 
Layer

Network

Packet Delivery 
Layer

Request 
from ULP

Response 
to ULP

Upper Layer 
Protocol

Exposes request/response interface to ULPs.
IB Verbs Reads, Atomics, Writes, Sends are mapped to 
request-response transactions.

Orders Transactions due to out-of-order network 
arrivals.
Ensures ordering semantics expected by the ULP.

Schedules transactions on the wire per QoS-policies.

Manages finite Falcon resources for isolation and 
deadlock prevention.



Falcon Packet Delivery Layer

Falcon Packet Delivery Layer between Transaction Layer and the Network.
Performs the more canonical responsibilities of a typical transport -  
● Ensures end-to-end reliable delivery from transmitter to receiver. 
● Does congestion control and multipath network load balancing to ensure 

low-latency and high utilization.

Transaction 
Layer Reliability

CC / Multipathing

ULP Network

Packet Delivery 
Layer



Swift is a delay based  congestion-control for Datacenters that achieves low-latency, 
high-utilization, near-zero loss implemented completely at end-hosts and NICs 
supporting diverse workloads like large-scale incast across latency-sensitive, bursty 
and IOPS-intensive applications working seamlessly in heterogeneous datacenters.

Swift Congestion Control as Baseline
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Congestion Aware Multipath Network Load Balancing

Src host

Dst host

Step 1
Congestion!

Step 2
FL: 0x123 -> FL: 0x45

RDMA/Falcon applications leverage multiple paths for load balancing in the network fabric transparently.

ToR ToR

Packet Delivery Layer

Upper Layer Protocol

Transaction Layer

Packet Delivery Layer

Upper Layer Protocol

Transaction Layer Repaths upon 
sustained congestion 
to find a congestion 

free path.



Congestion Signaling (CSIG): Practical & Effective In-band Signaling Protocol

Host ToR HostToRAgg Core Agg

20 Gbps
Extract signal 
value, optionally 
reflect to sender

100 Gbps 95 Gbps 70 Gbps 90 GbpsSend CSIG packet

Initialize signal header
● Choose signal type to 

request

Reverse path 
(ack)

Forward path

50%12.5% 95% 70% 90%

18us10us 3us 8us5us

800G 100G 100G 100G 40G

ABW

ABW/C

Hop delay

Bottlenecks

C

Minimum Available Bandwidth: min(ABW) Minimum Available Bandwidth in bps across all links on 
the packet path.

Maximum Link Utilization: max(U/C) or min(ABW/C) Maximum Link Utilization in percentage of link speed 
across all links on the path.

Maximum Per-Hop Delay: max(PD) Maximum per-hop delay across all hops in the path.



Timely and Precise Loss Recovery via Selective Retransmissions

Falcon Receiver
● Indicates to the sender which packets are received.
● Acknowledgement coalescing and piggybacking for 

high Op rate.

Falcon Sender
● Leverages relayed information to retransmit lost 

packets in a timely manner.
● Hardware-based retransmission - no firmware.
● Recent Acknowledgement (RACK) and Tail Loss 

Probe (TLP) can further enhance loss recovery.

Sender 
Falcon

Receiver 
Falcon

Push Data 
[PSN = 1 to 4]

Drop

Enhanced-ACK

0 1 1 1
Base-PSN = 1,                       [                      

[                      

Early Retx Push Data [PSN = 1]

Goal: Ideally retransmit -- only once -- the lost packets in a timely manner.



Programmability in Rate Update Engine (RUE)

Mailbox 
Queues

Swift, Load Balancing 
and Multipathing 
computations

Packet 
Delivery Layer

network

Connection id
Type: ACK/NACK/Rxmit
HW Timestamps
Remote Buffer occupancy
NACK code
Num. Acked

Event

Response Response

Event

SW Rate Update 
Engine 

Connection id
fCwnd (fabric)
nCwnd (NIC)
Inter-packet gap
Retransmit timeout
Randomize path

Timing Wheel



Single Queue Pair Latency

Setup:
Measure message completion time 
(round-trip time from application 
posting Op to receiving completion) 
over message sizes.  

Takeaway:
Tight tail latency: p99 latency, 
median and ideal latency match 
across message sizes.



Incast with increasing #connections

Goodput is saturated at max link speed.
Median and Tail latencies are close to the 
ideal achievable.

Fabric congestion window modulates per 
#connections. Round-trip time settles at 
Swift target delay.



Scalability under Packet Losses

Setup: induced packet losses on one 
Queue Pair from 0 to 5%. 

Takeaways:

Stable goodput and message latency as 
loss rate increases; graceful degradation 
at higher losses.

Low retransmission overhead even under 
high packet loss rate



Predictable performance for warehouse-scale: low 
tail latency, massive application bandwidth, mitigating 
congestion and efficient network utilization.

Efficiency @scale: HW acceleration enables 
high-bandwidth (200 Gbps), low-latency (~2.0μs 
one-way) and high Op rate (150Mpps) and 
connection scaling.

Need of the day: meets requirements of critical 
workloads, HPC and AI/ML; also good for offloading 
Storage and RPC. 

Why Falcon Matters



RDMA/Falcon SW Components 
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SW Components



● Falcon supports Standard IB Verbs Interface. 
○ Applications work w/o modifications: Userspace verbs under libibverbs using RC (Reliable 

Connected) and UD (Unreliable Datagram) Queue Pairs.
○ Kernel verbs used for RDMA Connection Management.
○ Control plane is offloaded from the Compute Node to the IPU cores.
○ HW datapath offloaded under SR-IOV.

● Optional SW/HW features available over RDMA-Falcon
○ Optimized libfabric provider from Intel, PSM3.
○ Virtual traffic class for selecting performance profiles.
○ 8K MTU support.
○ Completions indicating dropped UD datagrams.  
○ Unordered Queue Pairs with Out of Order completions and data placement for large 

operations .

Application Interface



Falcon Control Plane and Connection Management
Key functions
Manages resource policies for SR-IOV PCIE functions.
● E.g. Resource isolation for multi-tenancy, cap on HW 

resources consumed by a Virtual Function.

Connection setup done as a “bump-in-the-wire” model.
● Transparent to on-host RDMA drivers/applications.
● Optional business logic for connection management, 

e.g., Virtual Function (VF) lifecycle, VF - VNET 
mapping, VIP to PIP translation.

Manage the datapath performance.
● Telemetry for monitoring and troubleshooting.
● Configuration management for RDMA-Falcon.

Implementation philosophy
● Runs on IPU cores to enable Cloud Service Providers 

to operate RDMA.
● Host  and VM RDMA SW stacks are Falcon agnostic to 

ease lift-and-shift applications.

IPU Cores

Falcon Control 
Plane and 
Connection 

Management (app)

RUE
(app)

RDMA Config 
Assist 
(rca.ko)

Falcon CSR 
Driver

IXD

Linux Kernel
User Space

Platform 
Drivers



RDMA over Falcon: Connection Setup Protocol

Guest VM / Host View:
● Step 1: RDMA endpoint allocation, ibv_create_{pd, cq, mr, qp}.
● Step 2: Handshake with peer (rdma_cm or out-of-band).
● Step 3: QP setup with peer info, ibv_modify_qp.
● No changes to upstream (RoCE) software.
● Scalable control ops per second with large number of QPs.

Falcon View:
● Step 1: Intercept ibv_{create, modify, destroy}_{qp, ah}.
● Step 2: CID allocation, congestion control initialization, QoS controls, etc.
● Step 3: Security tunnel assignment (PSP, IP-SEC).
● Step 4: Handshake with peer (optional integration with VPC control plane).
● Step 5: Bring up connection and update RDMA QP/AH context with Falcon 

connection info.



● QP commands are 
intercepted

● The Falcon CM allocates 
one CID per RC QP

● Similar flows work for 
RDMA-CM* as well as 
most OOB schemes

Falcon RC Connection Setup (part 1: Resource Allocation)

* A separate connection setup 
flow for CID - AH binding is 
necessary to support UD traffic in 
RDMA-CM



● The Falcon CM initiates 
handshake when 
possible

● Optional: VPC / 
business logic 
integration

● ModifyQP (RTR) shall 
always be completed 
no matter if the Falcon 
connection setup is 
successful or not.

Falcon RC Connection Setup (part 2: Early Handshake)



Parallel handshakes 
improve connection 
setup performance

Falcon RC Connection Setup (part 3: Falcon Setup)



Falcon CSR Driver and RCA.ko

Falcon CSR driver, RDMA Configuration Assistant (RCA) and IXD 
(Control Plane Driver for Intel IPU) are kernel modules.
● Falcon CSR driver provides memory bar and CSR register 

access to the Connection Manager and SW Rate Update 
Engine.

● RCA intercepts control path verbs such as QP/AH 
create/modify/destroy and forwards the commands to 
Falcon Connection Manager.
○ rca.ko is implemented as a IXD driver auxiliary 

device.
○ rca.ko takes ownership of a command queue for 

intercepting ibverbs from host RDMA driver.
○ rca.ko uses netlink for communications with the 

connection manager running in user space.

IPU Cores

Falcon Control 
Plane and 
Connection 

Management (app)

RUE
(app)

RDMA Config 
Assist 
(rca.ko)

Falcon CSR 
Driver

IXD

Linux Kernel
User Space

Platform 
Drivers



Programmable Congestion Control 

● Implements Swift for fabric and NIC/host congestion.
● Implements congestion-aware Multipathing, and Load 

Balancing.
● Provides API for per-connection level congestion stats. 

Implementation  
● C++ Engine running on IPU Compute Complex.
● Can be upgraded in a hitless manner.
● Processes per-connection Datapath Events.

○ Generates congestion response for connection.
○ One response per  RTT for each connection.

● Processes 18M events/sec on one core 
○ Minimum DRAM interactions. 
○ Batched event processing to reduce barriers.

● Can be scaled upto more cores if needed.

IPU Cores

Falcon Control 
Plane and 
Connection 

Management (app)

RUE
(app)

RDMA Config 
Assist 
(rca.ko)

Falcon CSR 
Driver

IXD

Linux Kernel
User Space

Platform 
Drivers

Rate Update Engine (RUE) 



Telemetry (1/2)

Use-cases
● Production fleet monitoring.
● Debugging network performance and availability.

○  E.g., when an application (on physical host/VM) reports that the network is slow.
● Surface telemetry to applications for monitoring and debuggability. 
● E2E network performance tuning.

Our approach
● Latency histograms for visibility into tail latencies.
● Granular telemetry for precise debugging. 

○ Per-connection statistics. 
○ Per VM-pair statistics for virtualized applications. 

● Telemetry collection has minimal impact on NIC performance.



Telemetry (2/2)
Telemetry collected across layers works coherently to  identify bottlenecks in end-to-end paths.
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SW Components



Host Drivers and Providers - Upstreaming Status

iRDMA driver and Verbs provider patches to support 
Intel(R) IPU E2100 adapters to be submitted for 
review in this quarter.

iRDMA driver runs on an auxiliary device created by 
the IDPF driver. 

IDPF driver is already in upstream kernel.

PSM3 OFI provider to include additional 
optimizations for HPC, AI/ML Workloads running on 
top of Falcon Transport.



Falcon SW Components - Upstreaming Plan
RCA.ko runs on top of an auxiliary 
device created by the IXD driver (Intel 
Control Plane Driver).

IXD driver to be upstreamed.

Plan to upstream both RCA.ko and 
Falcon CSR driver.

User space SW (Falcon control plane, 
connection management, SW-RUE) 
will be open-sourced.



Falcon technology brings 10 years of advances in Low Latency, Isolation and Efficiency to hardware.

Open Technology:
● Falcon @OCP 2023 [slides][talk][Google Cloud blog post].
● Falcon Specifications released in Q1 ’24 

[https://github.com/opencomputeproject/OCP-NET-Falcon]. 
○ v0.9 of Falcon Transport, RDMA-over-Falcon, NVMe-over-Falcon.
○ v1.0 of Falcon Transport and RDMA-over-Falcon.

● Further advancements in protocol to be released in future specifications.
● RDMA/Falcon Simulator to be opened up.

Upstreaming changes to use advanced capabilities from Falcon:
● 8KB MTU support.  Approach IBTA for inclusion of 8KB MTU support into the specification – could 

be used by RoCEv2 as well.
● iRDMA driver changes to expose basic telemetry information from Falcon.
● Expose unordered connection and Complete-in-Error to advanced applications.
● Use DirectVerbs as a baseline solution for exposing such new capabilities.

Going Forward

https://drive.google.com/file/d/1Xfcz4dMNd1tUjCHxHMSG5G8DMKlw8wsF/view
https://www.youtube.com/watch?v=je1BnXNE670
https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport?e=13802955
https://github.com/opencomputeproject/OCP-NET-Falcon
https://github.com/opencomputeproject/OCP-NET-Falcon
https://www.opencompute.org/contributions?contributions%5Bquery%5D=Falcon
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